Synthesis of (\pm)-aklavinone and (\pm)-auramycinone via electrondeficient o-quinonoid pyrones

David W. Jones* and Christopher J. Lock
School of Chemistry, The University, Leeds LS2 9JT, UK

Abstract

Dehydration of the formyl acid $3(\mathrm{R}=\mathrm{H})$ with acetic anhydride in benzene at $80^{\circ} \mathrm{C}$ generates the quinonoid pyrone 4 which can be trapped with norbornadiene, N-phenylmaleimide and enol silyl ethers; the adduct 6 ($\mathrm{R}=\mathrm{Me}, \mathrm{P}=$ TES) and its 9 -epimer 10 from 2-(triethylsilyloxy)propene are readily transformed into (\pm)-auramycinone $2(\mathrm{R}=\mathrm{Me})$ whilst those $[6(\mathrm{R}=$ vinyl, $\mathrm{P}=\mathrm{TES})$ and its 9 -epimer] from 2-(triethylsilyloxy)buta-1,3-diene are readily converted into the methyl ethers 24, 25, 33 and 34 of which 24, 33 and 34 are known to be readily converted into (\pm)-aklavinone $2(R=E t)$.

Derivatives of 2-benzopyran-3-one 1 are reactive Diels-Alder dienes which are useful building blocks for the assembly of

1
aromatic steroids ${ }^{1}$ and lignans like podophyllotoxin. ${ }^{2}$ In addition Jung and his collaborators ${ }^{3}$ have used the parent pyrone 1 to prepare AB-ring analogues of anthracyclinones. Like these workers we have long cherished the view that anthracyclinones such as aklavinone $2(\mathrm{R}=\mathrm{Et})$ and auramycinone $2(\mathrm{R}=\mathrm{Me})$ could be prepared from the potentially tautomeric pyrone 4 along the lines outlined in Scheme 1. We now describe the reduction of this plan to practice. ${ }^{4}$

Scheme 1
The acid 3 ($\mathrm{R}=\mathrm{H}$) was prepared by acid-catalysed hydrolysis of the methyl ester $3(\mathrm{R}=\mathrm{Me})$, in turn available from 3-furoic acid and bromojuglone in six steps. ${ }^{5}$ Attempts to generate and trap the pyrone 4 using our usual method (boiling acetic anhydride) were abortive. However reducing the reaction temperature to ca. $80^{\circ} \mathrm{C}$ by treating $3(\mathrm{R}=\mathrm{H})$ with boiling benzenc-acetic anhydride (ratio 2:1) gave a modest yield of the N-phenylmaleimide adduct 7 .
The endo-configuration of 7 is indicated by the appearance of signals for two aromatic protons at $\delta 6.67-6.70$; the signals of the o-protons of the phenyl ring (H_{a} in 7) are shielded by the syn-anthraquinone moiety. In addition the vicinal coupling
constants associated with $7-\mathrm{H}(4.9 \mathrm{~Hz})$ and $10-\mathrm{H}(3.8 \mathrm{~Hz})$ are characteristic of endo-adducts. ${ }^{6}$ Similar trapping of 4 with norbornadiene gave the endo-adduct $8(45 \%)$ and the exoadduct $9(22 \%)$ which were readily distinguished by the strongly shielded signals of the methylene protons in the former ($\delta_{\text {На }}$ $0.08, \delta_{\mathrm{Hb}} 0.84$) compared with the latter ($\delta 1.53$ and 2.13 , not necessarily respectively). The improved adduct yield with the more electron rich dienophile suggests 4 behaves as an electron deficient diene. This was confirmed by the efficient trapping of 4 with enol silyl ethers. Thus, with 5 ($\mathrm{R}=\mathrm{Me}, \mathrm{P}=\mathrm{TES}$) the endo-OTES adduct $6(\mathrm{R}=\mathrm{Me}, \mathrm{P}=\mathrm{TES})$ and its exo isomer 10 were obtained in a ratio of $2: 1$ and in 50% yield together with a ca. $1: 1$ mixture of the adducts 13 (18% yield). Once again the greater shielding of endo-orientated groups was used to assign endo-exo stereochemistry (see Experimental section). The structures of the unexpected adducts $\mathbf{1 3}$ are consistent with the NMR spectra; part of the data for the chromatographically more polar isomer is appended to formula 13. The presence of an isolated AB-spin system, an ABX-spin system, and only one chelated hydroxy group is most easily accommodated by this structure. The compounds 13 are most simply regarded as arising from the quinone methide tautomer 14 of the pyrone 4.

However, formation of $\mathbf{1 3}$ in other ways cannot be excluded (Scheme 2). Both the pseudo-acid anhydride 15 and the cation 16 produced from it by loss of acetate ion are intermediates of a type that are likely to be involved in acetic anhydride induced dehydration of o-formylphenylacetic acids. ${ }^{1}$ It is possible that 16 could be captured by enol silyl ether to give intermediate 17 (Scheme 2) which could give 13 by proton loss (arrows in 17). Alternatively loss of a phenolic proton in 16 could give the quinone methide 14 directly. This could then give 6 and 10 only after tautomerisation to 4 . As described in the sequel trapping 4 with the more electron rich (higher HOMO) dienol silyl ether $5(\mathrm{R}=$ vinyl, $\mathrm{P}=\mathrm{TES})$ gives adducts of type 6 and 10 in good yield but no detectable products of type 13. This suggests the pyrone $\mathbf{4}$ is the first formed trappable intermediate. It is only with the less efficient enol silyl ether traps e.g. $5(\mathrm{R}=\mathrm{Me}$, $\mathrm{R}=\mathrm{TES}$) that some 4 escapes trapping and tautomerises to 14 which then gives the adducts 13 .

Model experiments using the 4,6 -dideoxy congener of 4 and the ether $5(\mathrm{R}=\mathrm{Et}, \mathrm{P}=\mathrm{TBDMS})$ gave adducts derived from the Z - and E-forms 18 of the double bond shift isomer of the starting alkene. Our planned route to aklavinone was therefore modified to involve adduction of 4 with the dienol ether $5(\mathrm{R}=$ vinyl, $\mathrm{P}=$ TES). Trapping was more efficient with the dienol ether and the endo-adduct $6(\mathrm{R}=$ vinyl, $\mathrm{P}=\mathrm{TES}$) and its exoisomer 11 were obtained in a $1: 1$ ratio and 75% yield. The adducts could be separated by crystallisation and fully

7

9

8

10: $R=M e, P=T E S$
11; $R=$ vinyl, $P=$ TES
12; $R=E t, P=T E S$

13; $\mathrm{A}=\mathrm{Me}, \mathrm{P}=\mathrm{TES}$

14

15

13

14

$6+10$

Scheme 2
characterised. Again the preferred shielding of endo-orientated groups allowed easy assignment of stereochemistry. The adducts were individually reduced using hydrogen and Wilkinson's catalyst to avoid benzylic hydrogenolysis and reduction of ring-D; $6(\mathrm{R}=\mathrm{Et}, \mathrm{P}=\mathrm{TES})$ and its $\mathrm{C}-9$ epimer 12 were obtained in excellent yield.

Our model studies using the endo-OMe adduct 19 showed it underwent smooth lactone ring opening with sodium methoxide. The resulting 7β-hydroxy derivative was expected to epimerise to the natural 7α-stereochemistry upon treatment with either BF_{3}-diethyl ether ${ }^{5}$ or $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}^{7}$. In contrast the exo-OMe isomer of 19 reacted slowly with $\mathrm{NaOMe}-\mathrm{MeOH}$ to give only the naphthacene derivative $\mathbf{2 0}(X=H, R=E t)$ by
elimination of both methanol and water. In this case the hydroxy ester formed upon opening the lactone ring has a transperiplanar relationship between $10-\mathrm{H}$ and the methoxy at C-9 so that an E2 reaction (with E1cB character) results in rapid loss of methanol, to be followed by water loss giving $20(X=H$, $R=E t$).

Fortunately, the lactone ring opening took a different mechanistic course with the C-6 hydroxy intermediates involved in the actual synthesis. With a large excess of sodium methoxide (26 mol equiv.) in a $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution 6 ($\mathrm{R}=\mathrm{Et}, \mathrm{P}=\mathrm{TES}$) gave, after a work-up involving brief treatment with diazomethane, a mixture of $21(49 \%)$ and 22 (9%) as well as 6% of the $\Delta^{7.8}$ alkene $39(X=E t, Y=O T E S)$,

18

19

20

21: $X=E t, Y=O T E S, Z=O M e$
22; $X=E t, Y=O T E S, Z=O H$
23: $X=O T E S, Y=E t, Z=O M e$
24; $X=E t, Y=O H, Z=O M e$
25; $X=O H, Y=E t, Z=O M e$
26: $X=M e, Y=O T E S, Z=O M e$
27; $X=O T E S, Y=M e, Z=O M e$
28; $X=M e, Y=O H, Z=O M e$
29; $X=O H, Y=M e, Z=O M e$ 30; $X=M e, Y=O T E S, Z=O H$

39

31; $X=O T E S, Y=E t, Z=O M e$
32; $X=E t, Y=O T E S, Z=O M e$
33; $X=O H, Y=E t, Z=O M e$
34: $X=E t, Y=O H, Z=O M e$
35; $X=O T E S, Y=M e, Z=O M e$
36; $X=M e, Y=O T E S, Z=O M e$
37; $X=O H, Y=M e, Z=O M e$
38; $\mathrm{X}=\mathrm{Me}, \mathrm{Y}=\mathrm{OH} . \mathrm{Z}=\mathrm{OMe}$

40
and traces of the fully aromatic product $20(\mathrm{R}=\mathrm{Et}, \mathrm{X}=\mathrm{OH})$. Whilst the hydroxy ester 22 arises via the usual acyl-oxygen fission of the lactone, the methoxy ester 21 is most likely formed by elimination to the quinone methide carboxylate 40 which then adds methoxide to the less hindered β-face. Similar treatment of the C-9 epimer 12, expected on the basis of our model experiments to be problematic, actually proceeded smoothly via the quinone methide mechanism to give 23 (13%) and 31 (49%) as well as alkenic product (8%).

In marked contrast to the related tert-butyldimethylsilyl ether which only loses the protecting group under conditions which also cause extensive aromatisation of ring-A, the TES ether 21 was smoothly deprotected $\left(6 \% \mathrm{HF}-\mathrm{H}_{2} \mathrm{O}\right.$ in $2: 1 \mathrm{MeCN}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$) to give the alcohol 24 in quantitative yield. Replacement of the $\mathrm{C}-7 \beta$-methoxy group by an α-hydroxy group was accomplished using trifluoroacetic acid ${ }^{7}$ to give (\pm)aklavinone in 87% yield. For preparative purposes it is simplest to treat the mixture of hydrogenated adduct $6(\mathrm{R}=\mathrm{Et}, \mathrm{P}=$ TES) and its C-9 epimer 12 with sodium methoxide to give four products separated by chromatography into two pairs; 21 and 23 forming one pair (45%, ratio $6: 1$) and 31 and 32 forming the second pair $(26 \%$, ratio $6: 1)$. Desilylation of the first pair ($\mathrm{HF}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeCN}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 24 (70%) and 25 (21%). Desilylation of the second pair gave $33(86 \%)$ and 34 (12%). Since 24,33 and 34 are readily converted ${ }^{5}$ into (\pm)aklavinone $2(\mathrm{R}=\mathrm{Et})$ this route constitutes an efficient total synthesis of aklavinone.

The synthesis of (\pm)-auramycinone proceeded along the same lines. The adducts $6(R=M e, P=T E S)$ and 10 prepared as described above were separated by crystallisation but the process was inefficient and lactone ring opening was carried out, at first on partially separated adduct mixtures to trace which methoxy ester arose from which adduct. Subsequently
the unrecrystallised adduct mixture was submitted to ring opening. The $2: 1$ mixture of endo-OTES adduct $6(\mathrm{R}=\mathrm{Me}$, $\mathbf{P}=\mathrm{TES}$) and exo-TES adduct 10 gave after ring opening and chromatography a least polar fraction (25%) containing 35 (2.7 parts) and 36 (1 part). The more polar fraction (49%) consisted of the β-methoxy ester 26 and its $\mathrm{C}-9$ epimer 27 (ratio 8.7:1). Both mixtures were desilylated cleanly ($\mathrm{HF}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeCN}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and the individual alcohols separated by chromatography. With trifluoroacetic acid the alcohol 28 from the major product 26 gave (\pm)-auramycinone in 80% yield. In the same way α-methoxy isomer 38 gave (\pm)-auramycinone in 91% yield. Conversion of the less abundant alcohols 37 and 29 into (\pm)auramycinone requires epimerisation at $\mathrm{C}-10$ for 29 and at both $\mathrm{C}-10$ and $\mathrm{C}-7$ for 37 . Our preliminary attempts to epimerise 37 and 29 at $\mathrm{C}-7$ using BF_{3}-diethyl ether gave mainly $20(\mathrm{R}=\mathrm{Me}$, $\mathrm{X}=\mathrm{OH})$. Nevertheless even without utilising 37 and 29 the auramycinone synthesis is quite efficient giving a 19% yield in four steps from the acid $3(\mathrm{R}=\mathrm{H})$.

In summary, we have shown that the novel pyrone 4 can be generated and trapped efficiently despite its possible tautomerism, e.g. with 14. Its additions to dienol silyl ethers are highly chemo- and regio-selective, but there is little endo-preference shown between the silyloxy and vinyl (or alkyl) groups of the dienophile. The adducts $6(\mathrm{R}=$ alkyl, $\mathrm{P}=\mathrm{TES})$ undergo smooth ring opening with sodium methoxide probably via quinone methide intermediates rather than by acyl-oxygen fission as originally conceived and investigated in model experiments both by ourselves and Jung. ${ }^{3}$ This is important as the C-9 epimers of the adducts 6 lacking a C-6 hydroxy group fail to undergo clean lactone ring opening with sodium methoxide. The availability of the quinone methide mechanism therefore allows utilisation of both endo- and exo-OTES compounds $[6(R=E t, P=T E S)$ and its $C-9$ epimer $]$.

Experimental

Mps were determined with a Kofler hot-stage apparatus and are uncorrected. Unless otherwise stated infrared spectra were recorded as Nujol mulls on a Philips PU 8706 infrared spectrophotometer, and referenced to a peak at $1601 \mathrm{~cm}^{-1}$ of polystyrene. ${ }^{1} \mathrm{H}$ NMR spectra were determined in CDCl_{3}, with tetramethylsilane as internal standard with a JEOL FX 90Q instrument (90 MHz spectra) and a General Electric QE 300 instrument (300 MHz spectra). J Values are given in Hz . Mass spectra were obtained on an A.E.I. MS902 instrument. Chromatography on silica refers to short-column chromatography over Kieselgel G60 (Merck). ${ }^{8}$ Ether refers to diethyl ether and light petroleum (petroleum) to the fraction bp $60-80^{\circ} \mathrm{C}$.

Preparation of 3-formyl-4,5-dihydroxy-9,10-dioxo-2-anthryl-

 acetic acid 3 ($\mathbf{R}=\mathbf{H}$)A solution of the corresponding methyl ester ${ }^{5,7}(150 \mathrm{mg})$ in a mixture of tetrahydrofuran (THF) ($100 \mathrm{~cm}^{3}$) and hydrochloric acid ($12 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 10 \mathrm{~cm}^{3}$) was stirred at room temperaturc. After 18 h water was added and the resulting suspension was extracted with dichloromethane and the extracts washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was suspended in a small volume of boiling dichloromethane and the filtered solid dried in vacuo to give the title compound 3 ($\mathrm{R}=\mathrm{H}$) as an orange crystalline solid ($95 \mathrm{mg}, 66 \%$), mp 197$202{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 62.55 ; \mathrm{H}, 3.15 . \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{O}_{7}$ requires $\mathrm{C}, 62.6$; $\mathrm{H}, 3.1 \%) ; \nu_{\max } / \mathrm{cm}^{-1} 3500-2600,1705,1680$ and $1620 ; \delta(300$ $\left.\mathrm{MHz},\left[{ }^{2} \mathrm{H}_{8}\right] \mathrm{THF}\right) 4.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{CO}_{2} \mathrm{R}\right), 7.35(1 \mathrm{H}, \mathrm{dd}, J$ $6.7,2.8), 7.77-7.79(2 \mathrm{H}, \mathrm{m}), 7.91(1 \mathrm{H}, \mathrm{s}), 10.67(1 \mathrm{H}, \mathrm{s}), 10.88(1$ $\mathrm{H}, \mathrm{s}), 11.85(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.78(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 282$ $\left(\mathrm{M}^{+}-\mathrm{CO}_{2}, 52.3 \%\right)$ and $254\left(\mathrm{M}^{+}-\mathrm{CO}_{2}\right.$ and $\left.\mathrm{CO}, 100\right)$.

Preparation of N -phenylmaleimide adduct 7

A mixture of formyl acid $3(\mathrm{R}=\mathrm{H})(25 \mathrm{mg}, 0.077 \mathrm{mmol}), N-$ phenylmaleimide ($200 \mathrm{mg}, 1.15 \mathrm{mmol}$), benzene ($2 \mathrm{~cm}^{3}$) and acetic anhydride ($0.6 \mathrm{~cm}^{3}$) was boiled under reflux. After 2.75 h the solvent was removed under reduced pressure and the residue chromatographed on silica gel ($3: 17$, ether-dichloromethane) to give N -phenylmaleimide adduct $7(4.5 \mathrm{mg}, 12 \%)$ as a yellow crystalline solid, mp $284-288^{\circ} \mathrm{C}$ (decomp.) (benzene) (Found: $\mathrm{C}, 67.35 ; \mathrm{H}, 3.1 ; \mathrm{N}, 2.8 . \mathrm{C}_{27} \mathrm{H}_{15} \mathrm{NO}_{8}$ requires C, 67.4; $\mathrm{H}, 3.1$; $\mathrm{N}, 2.9 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1785,1710,1680$ and $1625 ; \delta(300 \mathrm{MHz})$ $3.81(1 \mathrm{H}, \mathrm{dd}, J 8.6,3.8,9-\mathrm{H}), 4.14(1 \mathrm{H}$, dd, $J 8.6,4.9,8-\mathrm{H})$, $4.68(1 \mathrm{H}, \mathrm{d}, J 3.8,10-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{d}, J 4.9,7-\mathrm{H}), 6.67-6.70$ $(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{PhH}), 7.36(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9), 7.75(1 \mathrm{H}, \mathrm{t}$, $J 8.0), 7.86-7.89(3 \mathrm{H}, \mathrm{m}), 11.84(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and 12.35 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}$); $m / z 439$ ($\mathrm{M}-\mathrm{NCO}, 15.6 \%$).

Preparation of endo and exo-norbornadiene adducts 8 and 9

A mixture of formyl acid $3(\mathrm{R}=\mathrm{H})(45 \mathrm{mg}, 0.14 \mathrm{mmol})$, norbornadiene ($0.14 \mathrm{~cm}^{3}, 1.3 \mathrm{mmol}$), benzene ($3.6 \mathrm{~cm}^{3}$) and acetic anhydride $\left(0.9 \mathrm{~cm}^{3}\right)$ was boiled under reflux. After 30 min the solvent was removed under reduced pressure to leave a yellow solid (54 mg). A portion of the crude product (44 mg) was chromatographed on silica in dichloromethane to give first the exo-adduct $9(10 \mathrm{mg}, 22 \%)$ as a yellow crystalline solid, mp $254-270{ }^{\circ} \mathrm{C}$ (decomp.) (ethanol) (Found: C, 71.9; H, 3.9. $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}_{6}$ requires $\mathrm{C}, 72.0 ; \mathrm{H}, 4.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1767,1674$ and $1629 ; \delta(300 \mathrm{MHz}) 1.53(1 \mathrm{H}, \mathrm{d}, J 10.7,17-\mathrm{H}), 1.98-2.07(2 \mathrm{H}, \mathrm{m}$, 8 - and $9-\mathrm{H}), 2.13(1 \mathrm{H}, \mathrm{d}, J 10.7,17-\mathrm{H}), 2.95(1 \mathrm{H}, \mathrm{s}, 13-$ or $16-$ H), $3.05(1 \mathrm{H}, \mathrm{s}, 13-$ or $16-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{d}, J 2.4,10-\mathrm{H}), 6.11$ (1 $\mathrm{H}, \mathrm{brs}, 7-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{m}$, olefinic H), $6.35(1 \mathrm{H}, \mathrm{m}$, olefinic H), $7.32(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.8), 7.70(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.76(1 \mathrm{H}, \mathrm{s}), 7.83(1$ H , dd, $J 8.0,0.8), 11.97(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.24(1 \mathrm{H}, \mathrm{s}$, ArOH); $m / z 400\left(\mathrm{M}^{+}, 3.1 \%\right), 372\left(\mathrm{M}^{+}-\mathrm{CO}, 4.9\right), 356\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{CO}_{2}, 1.3\right)$ and $290\left(\mathrm{M}^{+}-\mathrm{CO}_{2}\right.$ and $\left.\mathrm{C}_{5} \mathrm{H}_{6}, 73.8\right)$.

Further elution of the column gave the endo-adduct $\mathbf{8}(20 \mathrm{mg}$,
45%) as orange-yellow needles, $\mathrm{mp} 207-209.5^{\circ} \mathrm{C}$ (ethanol) (Found: C, 71.8; H, 3.95\%); $v_{\text {max }} / \mathrm{cm}^{-1} 1763,1670,1630$ and 1617 $\mathrm{cm}^{-1} ; \delta(300 \mathrm{MHz}) 0.08(1 \mathrm{H}, \mathrm{d}, J 10.0,17-\mathrm{H}), 0.84(1 \mathrm{H}, \mathrm{d}, J 10.0$, $17-\mathrm{H}), 2.38(1 \mathrm{H}, \mathrm{dd}, J 8.3,3.0,9-\mathrm{H}), 2.65(1 \mathrm{H}, \mathrm{s}, 13-$ or $16-\mathrm{H})$, $2.71(1 \mathrm{H}, \mathrm{s}, 13$ - or $16-\mathrm{H}), 2.74(1 \mathrm{H}, \mathrm{dd}, J 8.3,4.3,8-\mathrm{H}), 4.1$ (1 $\mathrm{H}, \mathrm{d}, J 3.0,10-\mathrm{H}), 6.11(1 \mathrm{H}, \mathrm{d}, J 4.3,7-\mathrm{H}), 6.25(1 \mathrm{H}, \mathrm{m}$, olefinic H), $6.28(1 \mathrm{H}, \mathrm{m}$, olefinic H), $7.34(1 \mathrm{H}$, dd, $J 8.0,0.9), 7.73(1 \mathrm{H}$, $\mathrm{t}, J 8.0), 7.79(1 \mathrm{H}, \mathrm{s}), 7.86(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9), 11.98(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArOH})$ and $12.24(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 290\left(\mathrm{M}^{+}-\mathrm{CO}_{2}\right.$ and $\mathrm{C}_{5} \mathrm{H}_{6}, 100$).

Preparation of 2-(triethylisilyloxy)buta-1,3-diene 5 ($\mathrm{R}=$ vinyl, P = TES)

Methyl vinyl ketone ($2.1 \mathrm{~g}, 30.0 \mathrm{mmol}$) was added dropwise over 10 min to a stirred solution of lithium diisopropylamide [from butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; 32 mmol) and diisopropylamine (32.8 mmol) in THF ($60 \mathrm{~cm}^{3}$) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1 H)-pyrimidone (DMPU) (1.7 $\mathrm{cm}^{3} \mathrm{~J} \mathrm{at}-78^{\circ} \mathrm{C}$. After 5 min a solution of triethylsilyl chloride ($5.1 \mathrm{~g}, 33.8 \mathrm{mmol}$) in THF ($22 \mathrm{~cm}^{3}$) was added dropwise to the reaction mixture. The mixture was allowed to warm to room temperature over 1.25 h and then poured into a mixture of 1 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ acetic acid and light petroleum ($\mathrm{bp} 40-60^{\circ} \mathrm{C}$). The layers were separated and the aqueous layer extracted with light petroleum (bp $40-60^{\circ} \mathrm{C}$). The combined extracts were washed with water, saturated aqueous sodium hydrogen carbonate, water ($2 \times$) and finally brine. The solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure. Filtration of the residue through silica gel using light petroleum (bp 40$60^{\circ} \mathrm{C}$) as eluent gave 2-(triethylsilyloxy)buta-1,3-diene (4.02 g , $82 \%)$ as a colourless liquid; $\delta(300 \mathrm{MHz}) 0.73(6 \mathrm{H}, \mathrm{q}, J 8.0$, $\left.3 \times \mathrm{SiCH}_{2} \mathrm{Me}\right), 1.00\left(9 \mathrm{H}, \mathrm{t}, J 8.0,3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 4.29(1 \mathrm{H}$, s), $4.33(1 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{d}, J 10.5), 5.51(1 \mathrm{H}, \mathrm{dd}, J 16.9,1.7)$ and $6.18(1 \mathrm{H}, \mathrm{dd}, J 16.9,10.5)$.

Preparation of adducts $6(R=$ vinyl, $P=$ TES $)$ and 11

A mixture of formyl acid $3(\mathrm{R}=\mathrm{H})(326 \mathrm{mg}, 1.0 \mathrm{mmol}), 2-$ (triethylsilyloxy)buta-1,3-diene ($3.67 \mathrm{~g}, 20 \mathrm{mmol}$), benzene (13 cm^{3}) and acetic anhydride ($6.5 \mathrm{~cm}^{3}$) was stirred and boiled under reflux. After 35 min the mixture was cooled and the solvent removed under reduced pressure. Silica gel chromatography ($1: 49$, ethyl acetate-benzene) gave an orange solid (390 mg , 79%). ${ }^{1} \mathrm{H}$ NMR showed this to consist of a mixture of endo and exo adducts in the ratio 1:1. Fractional crystallisation from dichloromethane-benzene gave the exo-adduct 11 (120 mg , 24%) as a yellow crystalline solid, $\mathrm{mp} 230^{\circ} \mathrm{C}$ (decomp.) (ethanol) (Found: C, 66.0; H, 5.75. $\mathrm{C}_{2}{ }_{7} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{Si}$ requires C , $65.85 ; \mathrm{H}, 5.75 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1770,1680,1635$ and $1623 ; \delta(300$ $\mathrm{MHz}) 0.65\left(6 \mathrm{H}, \mathrm{q}, J 7.8,3 \times \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.97(9 \mathrm{H}, \mathrm{t}, J 7.8$, $\left.3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 2.27(1 \mathrm{H}, \mathrm{dd}, J 14.4,1.2,8-\mathrm{H}), 2.58(1 \mathrm{H}, \mathrm{dd}$, $J 14.4,4.0,8-\mathrm{H}), 4.04(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 4.77(1 \mathrm{H}, \mathrm{d}, J 17.3$, olefinic H), $4.99(1 \mathrm{H}, \mathrm{d}, J 10.7$, olefinic H), $5.77(1 \mathrm{H}, \mathrm{dd}, J 17.3,10.7$, olefinic H), 6.18-6.19 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9)$, $7.7(1 \mathrm{H}, \mathrm{s}), 7.71$ ($1 \mathrm{H}, \mathrm{t}, J 8.0$), 7.84 ($1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9$), 11.97 (1 $\mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.29(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; \mathrm{m} / \mathrm{z} 492\left(\mathrm{M}^{+}, 10.3 \%\right)$, $463\left(\mathrm{M}^{+}-\mathrm{Et}, 20.6\right), 419\left(\mathrm{M}^{+}-\mathrm{CO}_{2}\right.$ and $\left.\mathrm{Et}, 100\right)$ and 308 $\left[\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{OSiEt}_{3}\right) \mathrm{CHCH}_{2}, 81.0\right]$.

Recrystallisation of the mother liquors from benzene gave the endo-adduct 6 ($\mathrm{R}=$ vinyl, $\mathrm{P}=\mathrm{TES}$) ($122 \mathrm{mg}, 25 \%$) as yellow needles, $\mathrm{mp} 193-196^{\circ} \mathrm{C}$ [benzene-light petroleum (bp $80-100^{\circ} \mathrm{C}$)] (Found: C, 66.05 ; H, 5.75%); $v_{\max } / \mathrm{cm}^{-1} 1774,1680$ and 1628; $\delta(300 \mathrm{MHz}) 0.40\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.70(9 \mathrm{H}$, $\left.\mathrm{t}, J 7.9,3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.91(1 \mathrm{H}, \mathrm{dd}, J 14.6,1.3,8-\mathrm{H}), 2.89(1$ $\mathrm{H}, \mathrm{dd}, J 14.6,3.8,8-\mathrm{H}), 4.11(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 5.36(1 \mathrm{H}, \mathrm{d}, J 10.8$, olefinic H), $5.45(1 \mathrm{H}, \mathrm{d}, J 17.4$, olefinic H), $6.12(1 \mathrm{H}, \mathrm{dd}, J 17.4$, 10.8 , olefinic H), $6.19(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9)$, $7.72(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.82(1 \mathrm{H}, \mathrm{s}), 7.86(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9), 12.00$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}$) and $12.33(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 492\left(\mathrm{M}^{+}, 6.6 \%\right)$,
$448\left(\mathrm{M}^{+}-\mathrm{CO}_{2}, 9.6\right), 419\left(\mathrm{M}^{+}-\mathrm{CO}_{2}\right.$ and $\left.\mathrm{Et}, 14.0\right)$ and 316 $\left(\mathrm{M}^{+}-\mathrm{Et}_{3} \mathrm{SiOH}\right.$ and $\left.\mathrm{CO}_{2}, 100\right)$.

Tris(triphenylphosphine)rhodium(I) chloride catalysed hydrogenation of adduct $6(\mathbf{R}=$ vinyl, $P=$ TES $)$

Adduct 6 ($\mathrm{R}=$ vinyl, $\mathrm{P}=\mathrm{TES}$) $(118 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\right](50 \mathrm{mg})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ were shaken at $20^{\circ} \mathrm{C}$ under hydrogen at a pressure of 1 atm . After 36 h the solvent was removed under reduced pressure and the residue chromatographed on silica gel (dichloromethane) to give a yellow solid (107 mg). ${ }^{1} \mathrm{H}$ NMR analysis indicated that the reduction was only 60% complete. The partially hydrogenated material (107 mg) and $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\right](50 \mathrm{mg})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) were shaken at $20^{\circ} \mathrm{C}$ under hydrogen at a pressure of 1 atm . After 26 h the solvent was removed under reduced pressure and the residue chromatographed on silica (dichloromethane) to give the lactone $6(\mathrm{R}=$ $\mathrm{Et}, \mathrm{P}=$ TES $)(91.5 \mathrm{mg}, 77 \%)$ as yellow needles, $\mathrm{mp} 212-216^{\circ} \mathrm{C}$ (ethanol) (Found: C, 65.6; H, 6.15. $\mathrm{C}_{2}{ }_{7} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{Si}$ requires C, $65.55 ; \mathrm{H}, 6.1 \%) ; v_{\max } / \mathrm{cm}^{-1} 1768,1675$ and $1624 ; \delta(300 \mathrm{MHz})$ $0.25-0.42\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.68(9 \mathrm{H}, \mathrm{t}, J 7.9$, $\left.3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right), 1.76(1 \mathrm{H}, \mathrm{dq}, J 14.3$, $7.5, \mathrm{R}-H \mathrm{CHMe}), 1.93$ ($1 \mathrm{H}, \mathrm{dq}, J 14.3,7.5, \mathrm{R}-\mathrm{HCHMe}), 1.96$ (1 H, br d, $J 14.4,8-\mathrm{H}), 2.49(1 \mathrm{H}, \mathrm{dd}, J 14.4,3.7,8-\mathrm{H}), 4.22(1 \mathrm{H}, \mathrm{s}$, $10-\mathrm{H}), 6.12-6.14(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.8), 7.72$ (1 $\mathrm{H}, \mathrm{t}, J 8.0), 7.81(1 \mathrm{H}, \mathrm{s}), 7.86(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.0), 12.01(1 \mathrm{H}$, $\mathrm{s}, \mathrm{ArOH})$ and $12.32(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 494\left(\mathrm{M}^{+}, 11.9 \%\right)$, $465\left(\mathrm{M}^{+}-\mathrm{Et}, 17.3\right), 421\left(\mathrm{M}^{+}-\mathrm{CO}_{2}\right.$ and $\left.\mathrm{Et}, 28.9\right)$ and 318 $\left(\mathrm{M}^{+}-\mathrm{Et}_{3} \mathrm{SiOH}\right.$ and $\left.\mathrm{CO}_{2}, 100\right)$.

Tris(triphenylphosphine)rhodium(I) chloride catalysed hydrogenation of adduct 11

Adduct $11(120 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\right](50 \mathrm{mg})$ in dichloromethane ($45 \mathrm{~cm}^{3}$) were shaken at $20^{\circ} \mathrm{C}$ under hydrogen at a pressure of 1 atm . After 24 h the solvent was removed under reduced pressure. ${ }^{1} \mathrm{H}$ NMR analysis indicated that the reduction was only 50% complete. The partially hydrogenated residue and $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\right](50 \mathrm{mg})$ in dichloromethane ($30 \mathrm{~cm}^{3}$) were shaken at $20^{\circ} \mathrm{C}$ under hydrogen at a pressure of 1 atm . After 24 h the solvent was removed under reduced pressure and the residue chromatographed on silica gel (dichloromethane) to give a yellow solid (91 mg). ${ }^{1} \mathrm{H}$ NMR analysis indicated that the reduction was only 64% complete. The partially hydrogenated material (91 $\mathrm{mg})$ and $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\right](50 \mathrm{mg})$ in dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ were shaken at $20^{\circ} \mathrm{C}$ under hydrogen at a pressure of 1 atm . After 24 h the solvent was removed under reduced pressure and the residue chromatographed on silica gel (dichloromethane) to give the lactone $12(73 \mathrm{mg}, 61 \%)$ as yellow needles, $\mathrm{mp} 240^{\circ} \mathrm{C}$ (decomp.) (ethanol) (Found: $\mathrm{C}, 65.7 ; \mathrm{H}, 6.25 . \mathrm{C}_{2} 7 \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{Si}$ requires C, $65.55 ; \mathrm{H}, 6.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1770,1715,1669$ and $1610 ; \delta(300 \mathrm{MHz}) 0.68\left(6 \mathrm{H}, \mathrm{t}, J 7.8,3 \times \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.93(3 \mathrm{H}$, $\left.\mathrm{t}, J 7.1, \mathrm{CH}_{3}\right), 1.00\left(9 \mathrm{H}, \mathrm{t}, J 7.8,3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.06(1 \mathrm{H}, \mathrm{dq}$, $J 14.4,7.1, \mathrm{R}-H \mathrm{CHMe}), 1.50$ ($1 \mathrm{H}, \mathrm{dq}, J 14.4,7.1, \mathrm{R}-\mathrm{HCHMe}$), 1.84 ($1 \mathrm{H}, \mathrm{dd}, J 14.1,1.1,8-\mathrm{H}), 2.60(1 \mathrm{H}, \mathrm{dd}, J 14.1,4.3,8-\mathrm{H}$), $4.14(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 6.12-6.13(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.32(1 \mathrm{H}, \mathrm{dd}, J 8.0$, $1.0), 7.71(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.78(1 \mathrm{H}, \mathrm{s}), 7.84(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.2)$, $11.95(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.27(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 494\left(\mathrm{M}^{+}\right.$, $2.7 \%), 465\left(\mathrm{M}^{+}-\mathrm{Et}, 11.8\right), 421\left(\mathrm{M}^{+}-\mathrm{CO}_{2}\right.$ and $\left.\mathrm{Et}, 30.3\right)$ and $318\left(\mathrm{M}^{+}-\mathrm{Et}_{3} \mathrm{SiOH}\right.$ and $\left.\mathrm{CO}_{2}, 100\right)$.

Tris(triphenylphosphine)rhodium(I) chloride catalysed

 hydrogenation of the adduct mixture $6(\mathrm{R}=$ vinyl, $\mathrm{P}=$ TES $)$ and 11A mixture of the adducts (ratio $1: 1)(410 \mathrm{mg}, 0.83 \mathrm{mmol})$ and $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\right](100 \mathrm{mg})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was shaken at $20^{\circ} \mathrm{C}$ under hydrogen at a pressure of 1 atm . After 44 h the solvent was removed under reduced pressure and the
residue chromatographed on silica gel (dichloromethane) to give a yellow crystalline solid ($336 \mathrm{mg}, 82 \%$), ${ }^{1} \mathrm{H}$ NMR analysis of which showed that it consisted of a mixture of the lactones 6 ($\mathrm{R}=\mathrm{Et}, \mathrm{P}=\mathrm{TES}$) and 12 (ratio 1:1).

Treatment of lactone $\mathbf{1 2}$ with sodium methoxide

A solution of sodium methoxide in methanol $\left(0.65 \mathrm{~mol} \mathrm{dm}^{-3}\right.$; $3.1 \mathrm{~cm}^{3}, 2.0 \mathrm{mmol}$) was added to a stirred solution of the lactone $12(41 \mathrm{mg}, 0.083 \mathrm{mmol})$ in dichloromethanc $\left(20 \mathrm{~cm}^{3}\right)$ at room temperature. After 3 h the mixture was acidified with hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}^{-3}$) and extracted with dichloromethane. The combined extracts were evaporated under reduced pressure and the residue taken up in dichloromethane and treated with an excess of ethereal diazomethane. Removal of the solvent under reduced pressure followed by silica gel chromatography ($1: 49$, ethyl acetate-benzene) gave an orange solid (3.5 mg , 8%) tentatively identified from its ${ }^{1} \mathrm{H}$ NMR as methyl 9 -ethyl-4,6-dihydroxy-5,12-dioxo-9-(triethylsilyloxy)-5,9,10,12-tetra-hydrotetracene-10-carboxylate $39 \dagger(\mathrm{X}=\mathrm{OTES}, \quad \mathrm{Y}=\mathrm{Et})$; $\delta(300 \mathrm{MHz}) 0.63\left(6 \mathrm{H}, \mathrm{q}, J 7.9,3 \times \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.86(3 \mathrm{H}$, $\left.\mathrm{t}, J 7.0, \mathrm{CH}_{3}\right), 0.95\left(9 \mathrm{H}, \mathrm{t}, J 7.9,3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.63$ ($1 \mathrm{H}, \mathrm{dq}, J 14.1,7.0$, R-HCHMe), $1.75(1 \mathrm{H}, \mathrm{dq}, J 14.1$, 7.0, R-HCHMe), $3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.05(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$, $6.05(1 \mathrm{H}, \mathrm{d}, J 10.4,8-\mathrm{H}), 6.97(1 \mathrm{H}, \mathrm{d}, J 10.4,7-\mathrm{H}), 7.30$ ($1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9$), $7.64(1 \mathrm{H}, \mathrm{s}), 7.68(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.83$ $(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.0), 12.06(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.41(1 \mathrm{H}, \mathrm{s}$, ArOH).

Further elution gave the α-methoxy ester 31 ($22 \mathrm{mg}, 49 \%$) as orange needles, $\mathrm{mp} 146-149^{\circ} \mathrm{C}$ (ethanol) (Found: C, $64.3 ; \mathrm{H}$, 6.6. $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Si}$ requires $\mathrm{C}, 64.4 ; \mathrm{H}, 6.7 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1739$, 1677 and $1619 \mathrm{~cm}^{-1} ; \delta(300 \mathrm{MHz}) 0.65(6 \mathrm{H}, \mathrm{t}, J 7.8$, $\left.3 \times \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.91-1.02\left(12 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right.$ and CH_{3}), 1.56 ($\left.1 \mathrm{H}, \mathrm{dq}, J 14.9,7.5, \mathrm{R}-\mathrm{HCHMe}\right), 1.88(1 \mathrm{H}, \mathrm{dq}, J$ $14.9,7.5$, R-HCHMe), 2.20 ($1 \mathrm{H}, \mathrm{d}, J 14.0,8-\mathrm{H}$), 2.73 (1 H , dd, $J 14.0,4.8,8-\mathrm{H}), 3.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $4.17(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 4.77(1 \mathrm{H}, \mathrm{d}, J 4.8,7-\mathrm{H}), 7.28(1 \mathrm{H}, \mathrm{dd}, J 8.0$, $0.9), 7.57(1 \mathrm{H}, \mathrm{s}), 7.66(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.80(1 \mathrm{H}, \mathrm{dd}, J 7.5,0.9)$, $12.05(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.65(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 511\left(\mathrm{M}^{+}-\right.$ Et, 100%) and $479\left(\mathrm{M}^{+}-\mathrm{MeOH}\right.$ and $\left.\mathrm{Et}, 46.7\right)$.
Elution of the column with $1: 19$ ethyl acetate-benzene gave a yellow crystalline solid ($6 \mathrm{mg}, 13 \%$) identified from its ${ }^{1} \mathrm{H}$ NMR as methyl 9 -ethyl-4,6-dihydroxy-7-methoxy-5,12-dioxo-9-(triethylsilyloxy)-5,7,8,9,10,12-hexahydrotetracene-10-carboxylate 23; $\delta(300 \mathrm{MHz}) 0.65\left(6 \mathrm{H}, \mathrm{t}, J 7.5,3 \times \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.86(3$ $\left.\mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right), 0.99\left(9 \mathrm{H}, \mathrm{t}, J 7.9,3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.30(1 \mathrm{H}$, dq, J 14.2, 7.2, R-HCHMe), $1.45(1 \mathrm{H}, \mathrm{dq}, J 14.2,7.2$, R-HCHMe), $2.34(1 \mathrm{H}$, ddd, $J 12.6,8.5,1.8,8-\mathrm{H}), 2.88(1 \mathrm{H}$, $\mathrm{dd}, J 12.6,8.5,8-\mathrm{H}), 3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.72(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.03(1 \mathrm{H}, \mathrm{d}, J 1.4,10-\mathrm{H}), 4.77(1 \mathrm{H}, \mathrm{t}, J 8.5,7-\mathrm{H})$, $7.31(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.8), 7.60(1 \mathrm{H}, \mathrm{s}), 7.68(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.82(1$ $\mathrm{H}, \mathrm{dd}, J 8.0,0.9), 12.06(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.76(1 \mathrm{H}, \mathrm{s}$, ArOH).

Treatment of lactone $6(\mathbf{R}=\mathbf{E t}, \mathbf{P}=\mathbf{T E S})$ with sodium methoxide

A solution of sodium methoxide in methanol $\left(0.52 \mathrm{~mol} \mathrm{dm}^{-3}\right.$; $6.3 \mathrm{~cm}^{3}, 3.3 \mathrm{mmol}$) was added to a stirred solution of the lactone $6(\mathrm{R}=\mathrm{Et}, \mathrm{P}=\mathrm{TES})(65 \mathrm{mg}, 0.13 \mathrm{mmol})$ in dichloromethane ($14 \mathrm{~cm}^{3}$) at room temperature. After 80 min the mixture was acidified with hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) and extracted with dichloromethane. The combined extracts were evaporated under reduced pressure and the residue taken up in dichloromethane and treated with an excess of ethereal diazometh-
\dagger For consistency the same numbering system has been used for all compounds although in some instances this means that the principal group does not have the lowest possible locant.
ane. Removal of the solvent under reduced pressure followed by silica gel chromatography ($1: 49$, ethyl acetate-benzene) gave an orange solid ($4 \mathrm{mg}, 6 \%$) whose ${ }^{1} \mathrm{H}$ NMR spectrum was consistent with the $\Delta^{7,8}$ olefin $39(\mathrm{X}=\mathrm{Et}, \mathrm{Y}=\mathrm{OTES}) ; \delta(300$ $\mathrm{MHz}) 0.40-0.50\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.77(9 \mathrm{H}, \mathrm{t}, J 7.8$, $\left.3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.06\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{3}\right), 1.70(1 \mathrm{H}, \mathrm{dq}, J 14.4$, 7.4, R-HCHMe), 1.85 ($1 \mathrm{H}, \mathrm{dq}, J 14.4,7.4, \mathrm{R}-\mathrm{HC} H \mathrm{Me}$), 3.65 (3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.14(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 6.12(1 \mathrm{H}, \mathrm{d}, J 9.8,8-\mathrm{H})$, $7.10(1 \mathrm{H}, \mathrm{d}, J 9.8,7-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{dd}, J 7.9,0.9), 7.70(1 \mathrm{H}, \mathrm{t}, J$ $7.9), 7.73(1 \mathrm{H}, \mathrm{s}), 7.84(1 \mathrm{H}, \mathrm{dd}, J 7.9,0.8), 12.08(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.43(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$.

Further elution with $1: 19$ ethyl acetate-benzene gave a yellow solid (13.5 mg) shown by ${ }^{1} \mathrm{H}$ NMR to consist of a complex mixture of compounds including starting material and aromatic ester $20(\mathrm{R}=\mathrm{Et}, \mathrm{X}=\mathrm{OH})$. Further elution gave the β-methoxy ester 21 ($34.5 \mathrm{mg}, 49 \%$) as yellow needles, mp 154 $156{ }^{\circ} \mathrm{C}$ (ethanol) (Found: $\mathrm{C}, 64.45 ; \mathrm{H}, 6.8 . \mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Si}$ requires $\mathrm{C}, 64.4 ; \mathrm{H}, 6.7 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1736,1679$ and $1624 ; \delta(300 \mathrm{MHz})$ $0.40-0.50\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.76(9 \mathrm{H}, \mathrm{t}, J 7.8$, $\left.3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{3}\right), 1.65(1 \mathrm{H}, \mathrm{dq}, J 14.2$, 7.2 , R-HCHMe), 1.75 ($1 \mathrm{H}, \mathrm{dq}, J 14.2,7.2$, R-HCHMe), $2.35-$ $2.45(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, 3.91 ($1 \mathrm{H}, \mathrm{br}$ s, $10-\mathrm{H}$), $4.85(1 \mathrm{H}, \mathrm{t}, J 7.6,7-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{dd}, J$ $8.0,0.9), 7.63(1 \mathrm{H}, \mathrm{s}), 7.68(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.83(1 \mathrm{H}, \mathrm{dd}, J 7.2$, $0.8), 12.11(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.71(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 511$ $\left(\mathrm{M}^{+}-\mathrm{Et}, 79.8 \%\right), 479\left(\mathrm{M}^{+}-\mathrm{MeOH}\right.$ and $\left.\mathrm{Et}, 87.3\right)$ and 408 ($\mathrm{M}^{+}-\mathrm{Et}_{3} \mathrm{SiOH}, 97.3$).

Finally elution with 1:4 ethyl acetate-benzene gave methyl 9-ethyl-4,6,7-trihydroxy-5,12-dioxo-9-(triethylsilyloxy)-5,7,8,-
9,10,12-hexahydrotetracene-10-carboxylate $22(6.5 \mathrm{mg}, 9 \%$) as orange needles, $\mathrm{mp} 192-193.5^{\circ} \mathrm{C}$ (ethanol) (Found: C, 64.2 ; $\mathrm{H}, 6.65 . \mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{Si}$ requires C, $63.85 ; \mathrm{H}, 6.5 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3600,1744,1678$ and $1626 ; \delta(300 \mathrm{MHz}) 0.40-0.50(6 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.75\left(9 \mathrm{H}, \mathrm{t}, J 7.9,3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.03(3 \mathrm{H}$, $\left.\mathrm{t}, J 7.4, \mathrm{CH}_{3}\right), 1.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 2.30(1 \mathrm{H}, \mathrm{dd}, J 13.5,8.5$, $8-\mathrm{H}$), 2.47 (1 H , ddd, $J 13.5,8.5,1.9,8-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.94(1 \mathrm{H}, \mathrm{d}, J 1.5,10-\mathrm{H}), 4.02(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{OH})$, $5.27(1 \mathrm{H}, \mathrm{brt}, J 8.5,7-\mathrm{H}), 7.32(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.7), 7.68(1 \mathrm{H}, \mathrm{s})$, $7.71(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.85(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8.0), 12.0(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.93(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 497\left(\mathrm{M}^{+}-\mathrm{Et}, 21.7 \%\right), 479$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{Et}, 76.6\right), 394\left(\mathrm{M}^{+}-\mathrm{Et}_{3} \mathrm{SiOH}, 80.8\right)$ and $376\left(\mathrm{M}^{+}-\mathrm{Et}_{3} \mathrm{SiOH}\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}, 63.4\right)$.

Preparation of 7-epi-alkavinone 7-methyl ether 24

Hydrofluoric acid (40% aqueous; $0.5 \mathrm{~cm}^{3}$) was added to a stirred solution of β-methoxy ester 21 ($12 \mathrm{mg}, 0.022 \mathrm{mmol}$) in dichloromethane ($2.5 \mathrm{~cm}^{3}$) and acetonitrile ($5 \mathrm{~cm}^{3}$) at room temperature. After 2 h saturated aqueous sodium hydrogen carbonate was added and the resulting mixture extracted with dichloromethane. The combined extracts were washed with saturated aqueous sodium hydrogen carbonate and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure and the crude product recrystallised from ethanol to give 7 -epiaklavinone 7 -methyl ether 24 ($9 \mathrm{mg}, 95 \%$) as yellow needles, $\mathrm{mp} 202-203{ }^{\circ} \mathrm{C}$ (ethanol); $\delta(300 \mathrm{MHz}) 1.05\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{3}\right)$, $1.65(1 \mathrm{H}, \mathrm{m}, H \mathrm{CHMe}), 1.75(1 \mathrm{H}, \mathrm{dq}, J 14.4,7.4, \mathrm{HCHMe})$, 2.25 (1 H , ddd, $J 14.2,6.6,1.2,8-\mathrm{H}$), 2.50 (1 H , dd, $J 14.2,6.6$, $8-\mathrm{H}), 3.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.92(1 \mathrm{H}$, br s, $10-\mathrm{H}), 4.84(1 \mathrm{H}, \mathrm{t}, J 6.6,7-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9)$, $7.65(1 \mathrm{H}, \mathrm{s}), 7.68(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.82(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9), 12.07$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}$) and 12.69 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}$).

Treatment of a mixture of lactone $6(\mathbf{R}=\mathbf{E t}, \mathrm{P}=\mathrm{TES})$ and its C-9 epimer 12 with sodium methoxide

A solution of sodium methoxide in methanol $\left(1.4 \mathrm{~mol} \mathrm{dm}^{-3} ; 10\right.$ $\mathrm{cm}^{3}, 14.0 \mathrm{mmol}$) was added to a stirred solution of the lactones $6(\mathrm{R}=\mathrm{Et}, \mathrm{P}=\mathrm{TES})$ and 12 ($1: 1 \mathrm{ratio})(336 \mathrm{mg}, 0.68 \mathrm{mmol})$ in dichloromethane ($50 \mathrm{~cm}^{3}$) at room temperature. After 2 h the
mixture was acidified with hydrochloric acid $\left(2 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and extracted with dichloromethane. The combined extracts were evaporated under reduced pressure and the residue taken up in dichloromethane and treated with an excess of ethereal diazomethane. Removal of the solvent under reduced pressure followed by silica gel chromatography (benzene then $1: 49$, ethyl acetate-benzene) gave a yellow crystalline solid (96.5 mg , 26%) which ${ }^{1} \mathrm{H}$ NMR showed consisted of the methoxy esters 31 and 32 ($6: 1$ ratio). The ${ }^{1} \mathrm{H}$ NMR data for the minor isomer 32 is as follows ($N B$ aromatic signals obscured by major isomer): $\delta(300 \mathrm{MHz}) 0.52\left(6 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.83(9 \mathrm{H}, \mathrm{t}$, $J 7.5, \mathrm{SiCH}_{2} \mathrm{CH}_{3}$), $1.44(1 \mathrm{H}, \mathrm{m}, \mathrm{R}-H C H M e), 1.73(1 \mathrm{H}, \mathrm{m}$, R-HCHMe), $2.28(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.71$ $\left(3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.08(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 4.69(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 12.10$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}$) and $12.69(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$.

Elution of the column with 1:9 ethyl acetate-benzene gave a yellow crystalline solid ($166 \mathrm{mg}, 45 \%$) which ${ }^{1} \mathrm{H}$ NMR showed consisted of the methoxy esters 22 and 23 (6:1 ratio). Finally elution of the column with 1:4 ethyl acetate-benzene gave a yellow solid ($12.5 \mathrm{mg}, 3.5 \%$) which ${ }^{1} \mathrm{H}$ NMR showed to be the hydroxy ester 22.

Preparation of methyl 9-ethyl-4,6,9-trihydroxy-7-methoxy-5,12-dioxo-5,7,8,9,10,12-hexahydrotetracene-10-carboxylates 33 and 34

Hydrofluoric acid (40% aqueous; $3 \mathrm{~cm}^{3}$) was added to a stirred solution of the silyl ethers 31 and $\mathbf{3 2}$ (ratio $6: 1$ by ${ }^{1} \mathrm{H}$ NMR) (96 $\mathrm{mg}, 0.18 \mathrm{mmol}$) in dichloromethane ($16 \mathrm{~cm}^{3}$) and acetonitrile ($32 \mathrm{~cm}^{3}$) at room temperature. After 1.5 h saturated aqueous sodium hydrogen carbonate was added and the resulting mixture partitioned between saturated aqueous sodium hydrogen carbonate and dichloromethane. The organic layer was separated and the aqueous layer extracted with dichloromethane. The combined extracts were washed with saturated aqueous sodium hydrogen carbonate and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure and the crude product chromatographed on silica gel. Elution with 1:9 then 1:4 ethyl acetate-benzene gave aklavinone 7-methyl ether $34(9 \mathrm{mg}, 12 \%)$ as orange needles, $\mathrm{mp} 190-193{ }^{\circ} \mathrm{C}$ (ethanol) (lit., $\left.{ }^{5} 193-199{ }^{\circ} \mathrm{C}\right) ; \delta(300 \mathrm{MHz}) 1.10(3 \mathrm{H}, \mathrm{t}, J 7.4$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.55(1 \mathrm{H}, \mathrm{dq}, J 14.2,7.4, \mathrm{R}-\mathrm{HCHMe}), 1.70(1 \mathrm{H}$, dq, J 14.2, 7.4, R-HCHMe), $2.35-2.5(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.63(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.15(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 4.79(1 \mathrm{H}$, s, OH), 4.91 ($1 \mathrm{H}, \mathrm{t}, J 2.9,7-\mathrm{H}$), 7.31 ($1 \mathrm{H}, \mathrm{dd}, J 8.3,0.9$), $7.66-$ $7.72(2 \mathrm{H}, \mathrm{m}), 7.83(1 \mathrm{H}, \mathrm{dd}, J 7.6,0.9), 12.05(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and 12.69 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}$).

Elution of the column with 3:7 ethyl acetate-benzene gave 9-epi-aklavinone 7 -methyl ether 33 ($65.5 \mathrm{mg}, 86.5 \%$) as a yellow crystalline solid, mp $185-188^{\circ} \mathrm{C}$ (ethanol) (lit., ${ }^{5} 191-192{ }^{\circ} \mathrm{C}$); $\delta(300 \mathrm{MHz}) 1.00\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.60-1.80(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{Me}$), 2.23 ($\left.1 \mathrm{H}, \mathrm{dd}, J 14.5,2.5,8-\mathrm{H}\right), 2.37(1 \mathrm{H}, \mathrm{dd}, J 14.5$, $5.6,8-\mathrm{H}), 2.68(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.81(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.07(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{dd}, J 5.6,2.5,7-\mathrm{H})$, $7.31(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.8), 7.58(1 \mathrm{H}, \mathrm{s}), 7.69(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.82(1$ $\mathrm{H}, \mathrm{dd}, J 8.0,0.8), 12.05(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.61(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArOH})$.

Preparation of methyl 9-ethyl-4,6,9-trihydroxy-7-methoxy-5,12-dioxo-5,7,8,9,10,12-hexahydrotetracene-10-carboxylates 24 and 25

Hydrofluoric acid (40% aqueous; $3.75 \mathrm{~cm}^{3}$) was added to a stirred solution of the silyl ethers 21 and 23 (ratio $6: 1$ by ${ }^{1} \mathrm{H}$ NMR) ($166 \mathrm{mg}, 0.31 \mathrm{mmol}$) in dichloromethanc ($20 \mathrm{~cm}^{3}$) and acetonitrile $\left(40 \mathrm{~cm}^{3}\right)$ at room temperature. After 2 h saturated aqueous sodium hydrogen carbonate was added and the resulting mixture partitioned between saturated aqueous sodium hydrogen carbonate and dichloromethane. The organic layer was separated and the aqueous layer extracted with
dichloromethane. The combined extracts were washed with saturated aqueous sodium hydrogen carbonate and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure and the crude material chromatographed on silica gel (1:9, ethyl acetate-benzene) to give 10 -epi-aklavinone 7-methyl ether 25 ($28 \mathrm{mg}, 21 \%$) as a yellow crystalline solid, $\mathrm{mp} 179-184^{\circ} \mathrm{C}$ (ethanol) (lit., $\left.{ }^{5} 184-187^{\circ} \mathrm{C}\right) ; \delta(300 \mathrm{MHz}) 1.01(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.50-1.77(1 \mathrm{H}, \mathrm{m}, \mathrm{R}-\mathrm{HCHMe}), 1.75(1 \mathrm{H}, \mathrm{dd}, J$ $14.6,3.5,8-\mathrm{H}), 1.90(1 \mathrm{H}, \mathrm{dq}, J 14.5,7.2, \mathrm{R}-\mathrm{HCHMe}), 2.49$ ($1 \mathrm{H}, \mathrm{dd}, J 14.6,3.5,8-\mathrm{H}), 3.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.78(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.02(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 4.80(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.0(1 \mathrm{H}, \mathrm{t}, J$ $3.5,7-\mathrm{H}), 7.32(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9), 7.58(1 \mathrm{H}, \mathrm{s}), 7.70(1 \mathrm{H}, \mathrm{t}, J$ $8.0), 7.84(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9), 12.05(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and 12.67 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}$).

Further elution gave 7-epi-aklavinone 7-methyl ether 24 (92 $\mathrm{mg}, 70 \%$) as a yellow crystalline solid (identified by ${ }^{1} \mathrm{H}$ NMR).

Conversion of methoxy ester $\mathbf{2 4}$ into aklavinone

Trifluoroacetic acid ($3.5 \mathrm{~cm}^{3}$) was added to methoxy ester 24 ($45 \mathrm{mg}, 0.1 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ (bath temperature) and the mixture was allowed to warm to $10^{\circ} \mathrm{C}$ over 30 min with stirring. The mixture was stirred at room temperature for 1.5 h before being concentrated in vacuo. The residue was dissolved in acetone ($7 \mathrm{~cm}^{3}$) and saturated aqueous sodium hydrogen carbonate $\left(3 \mathrm{~cm}^{3}\right)$ added with stirring. After 45 min water was added and the mixture extracted with dichloromethane. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure. Silica gel chromatography of the residue using $1: 4$, ethyl acetate-benzene then $2: 3$, ethyl acetate-benzene gave a yellow crystalline solid ($38 \mathrm{mg}, 87 \%$) with ${ }^{1} \mathrm{H}$ NMR signals identical with those reported for aklavinone. ${ }^{9}$

Synthesis of auramycinone

Preparation of 2-(triethylsilyloxy)propene $5(\mathrm{R}=\mathrm{Me}$, P = TES)
Acetone ($1.74 \mathrm{~g}, 30 \mathrm{mmol}$) was added dropwise to a stirred solution of lithium diisopropylamide [from butyllithium (1.6 $\mathrm{mol} \mathrm{dm}{ }^{3}$ in hexane; 32 mmol) and diisopropylamine (31.5 $\mathrm{mmol})]$ in THF ($60 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$. After $10 \mathrm{~min} 1,3$-dimethyl-3,4,5,6-tetrahydro-2(1 H)-pyrimidone (DMPU) ($17 \mathrm{~cm}^{3}$) was added followed immediately by the dropwise addition of a solution of triethylsilyl chloride ($5 \mathrm{~g}, 33 \mathrm{mmol}$) in THF (22 cm^{3}). The mixture was allowed to warm to room temperature over 2 h and poured into a mixture of acetic acid ($1 \mathrm{~mol} \mathrm{dm}^{-3}$) and light petroleum ($\mathrm{bp} 40-60^{\circ} \mathrm{C}$). The layers were separated and the aqueous layer extracted with light petroleum (bp 40$60^{\circ} \mathrm{C}$). The combined organic extracts were washed with water, saturated aqueous sodium hydrogen carbonate, water ($2 \times$) and finally brine. The solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under removed pressure. Filtration through a short column of silica gel [light petroleum (bp $40-60^{\circ} \mathrm{C}$) as eluent] gave 2-(triethylsilyloxy)propene $5(\mathrm{R}=\mathrm{Me}, \mathrm{P}=\mathrm{TES})(2.26 \mathrm{~g}$, $43 \%)$ as a colourless liquid; $\delta(300 \mathrm{MHz}) 0.69(6 \mathrm{H}, \mathrm{q}, J 7.8$, $\left.\mathrm{SiCH}_{2} \mathrm{Me}\right), 0.98\left(9 \mathrm{H}, \mathrm{t}, J 7.8,3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.79(3 \mathrm{H}, \mathrm{s}$, CH_{3}) and $4.04(2 \mathrm{H}, \mathrm{m}$, olefinic H$)$.

Preparation of adducts $6(\mathbf{R}=\mathrm{Me}, \mathbf{P}=\mathrm{TES}), 10$ and 13

 ($\mathbf{R}=\mathbf{M e}, \mathbf{P}=\mathbf{T E S}$)A mixture of formyl acid $3(\mathrm{R}=\mathrm{H})(220 \mathrm{mg}, 0.67 \mathrm{mmol})$, 2(triethylsilyloxy)propene ($2.1 \mathrm{~g}, 12.2 \mathrm{mmol}$), benzene $\left(9 \mathrm{~cm}^{3}\right)$ and acetic anhydride ($4.5 \mathrm{~cm}^{3}$) was boiled under reflux for 30 min . The solvent was removed under reduced pressure and the residue chromatographed on silica gel ($1: 49$, ethyl acetatebenzene) to give a yellow-orange solid ($170 \mathrm{mg}, 52 \%$) which ${ }^{1} \mathrm{H}$ NMR showed consisted of a mixture of adducts $6(R=M e$, $\mathbf{P}=$ TES $)$ and $\mathbf{1 0}$ in the ratio $2: 1$ respectively. Fractional crystallisation from benzene gave the exo-adduct $\mathbf{1 0}(38.5 \mathrm{mg}$,
12%) as yellow plates, $\mathrm{mp} 237-241^{\circ} \mathrm{C}$ (ethanol) (Found: C, $65.2 ; \mathrm{H}, 5.95 . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{7}$ Si requires $\mathrm{C}, 65.0 ; \mathrm{H}, 5.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1770,1676 and $1662 ; \delta(300 \mathrm{MHz}) 0.67\left(6 \mathrm{H}, \mathrm{q}, J 7.8, \mathrm{SiCH}_{2} \mathrm{Me}\right)$, $1.00\left(9 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.85(1 \mathrm{H}, \mathrm{dd}$, $J 14.0,1.1,8-\mathrm{H}), 2.61(1 \mathrm{H}, \mathrm{dd}, J 14.0,4.2,8-\mathrm{H}), 3.95(1 \mathrm{H}, \mathrm{s}, 10-$ H), 6.11-6.12 (1 H, m, 7-H), $7.32(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.0), 7.71(1 \mathrm{H}$, $\mathrm{t}, J 8.0)$, $7.78(1 \mathrm{H}, \mathrm{s}), 7.84(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9), 11.94(1 \mathrm{H} \mathrm{s}$, $\mathrm{ArOH})$ and $12.26(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 480\left(\mathrm{M}^{+}, 7.3 \%\right), 451$ (M $-\mathrm{Et}, 38.2$), $407\left(\mathrm{M}^{+}-\mathrm{Et}\right.$ and $\left.\mathrm{CO}_{2}, 47.7\right), 308\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{OSiEt}_{3}\right) \mathrm{Me}, 40.3\right]$ and $304\left(\mathrm{M}^{+}-\mathrm{Et}_{3} \mathrm{SiOH}\right.$ and CO_{2}, 100).

Recrystallisation of the mother liquors from benzene gave the endo-adduct $6(\mathrm{R}=\mathrm{Me}, \mathrm{P}=\mathrm{TES})(50 \mathrm{mg}, 15 \%)$ as orange plates, mp 213-230 ${ }^{\circ} \mathrm{C}$ (ethanol) (Found: C, 64.7 ; H, 5.75%); $\nu_{\text {max }} / \mathrm{cm}^{-1} 1770,1678$ and $1627 ; \delta(300 \mathrm{MHz}) 0.42(6 \mathrm{H}, \mathrm{q}, J 7.8$, $\left.\mathrm{SiCH}_{2} \mathrm{Me}\right), 0.72\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.8, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.94(1 \mathrm{H}, \mathrm{dd}, J 14.3,1.2,8-\mathrm{H}), 2.51(1 \mathrm{H}$, dd, $J 14.3,7.2,8-\mathrm{H})$, 4.03 ($1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}$), $6.11-6.13$ ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), 7.32 ($1 \mathrm{H}, \mathrm{dd}, J 8.0$, $0.8), 7.71(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.79(1 \mathrm{H}, \mathrm{s}), 7.85(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.8)$, $12.00(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.31(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 480\left(\mathrm{M}^{+}\right.$, $9.9 \%), 451\left(\mathrm{M}^{+}-\mathrm{Et}, 17.8\right), 308\left[\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{OSiEt}_{3}\right) \mathrm{Me}\right.$, 47.8] and $304\left(\mathrm{M}^{+}-\mathrm{Et}_{3} \mathrm{SiOH}\right.$ and $\left.\mathrm{CO}_{2}, 100\right)$.

Further elution of the column gave one stereoisomer of lactone $13(\mathrm{R}=\mathrm{Me}, \mathrm{P}=\mathrm{TES})(31 \mathrm{mg}, 9.5 \%)$ as yellow needles, mp 228.5-230 ${ }^{\circ} \mathrm{C}$ (ethanol) (Found: C, $65.15 ; \mathrm{H}, 5.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1768,1670,1635$ and $1600 ; \delta(300 \mathrm{MHz}) 0.59(6 \mathrm{H}, \mathrm{q}, J$ 7.5, $\mathrm{SiCH}_{2} \mathrm{Me}$), $0.80\left(9 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.89(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.13(1 \mathrm{H}, \mathrm{t}, J 12.0,18-\mathrm{H}), 2.78(1 \mathrm{H}, \mathrm{dd}, J 12.0,6.8,18-$ H), 3.79 ($1 \mathrm{H}, \mathrm{d}, J 18.1,9-\mathrm{H}), 3.94(1 \mathrm{H}, \mathrm{d}, J 18.1,9-\mathrm{H}), 5.69(1$ $\mathrm{H}, \mathrm{dd}, J 12.0,6.8,7-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{dd}, J 8.3,1.0), 7.64(1 \mathrm{H}, \mathrm{t}, J$ 7.9), $7.78(1 \mathrm{H}, \mathrm{dd}, J 7.6,1.0), 7.81(1 \mathrm{H}, \mathrm{s})$ and $12.99(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArOH}) ; m / z 451\left(\mathrm{M}^{+}-\mathrm{Et}, 100\right)$.

Further elution gave the epimeric lactone $13(\mathrm{R}=\mathrm{Me}, \mathrm{P}=$ TES) ($28 \mathrm{mg}, 8.5 \%$) as a yellow crystalline solid, $\mathrm{mp} 173-$ $177^{\circ} \mathrm{C}$ (diethyl ether) (Found: C, $64.75 ; \mathrm{H}, 5.7 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1744, 1672, 1641 and $1596 ; \delta(300 \mathrm{MHz}) 0.73(6 \mathrm{H}, \mathrm{q}, J 7.6$, $\left.\mathrm{SiCH}_{2} \mathrm{Me}\right), 0.93\left(9 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 2.44 (1 H , dd, $J 14.0,8.0,18-\mathrm{H}), 2.68(1 \mathrm{H}, \mathrm{dd}, J 14.0,8.0,18-\mathrm{H}$), 3.81 (1 H, d, J18.0, 9-H), $3.95(1 \mathrm{H}, \mathrm{d}, J 18.0,9-\mathrm{H}), 5.43(1 \mathrm{H}, \mathrm{t}, J$ $8.0,7-\mathrm{H}), 7.32(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9), 7.64(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.78(1 \mathrm{H}$, dd, $J 8.0,0.9$), $7.81(1 \mathrm{H}, \mathrm{s})$ and $12.98(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 451$ $\left(M^{+}-E t, 100 \%\right)$.

Preparation of methyl 4,6-dihydroxy-7-methoxy-9-methyl-5,12-dioxo-9-(triethylsilyloxy)-5,7,8,9,10,12-hexahydrotetracene-10carboxylate 35
A solution of sodium methoxide in methanol $\left(0.48 \mathrm{~mol} \mathrm{dm}^{-3} ; 5\right.$ $\mathrm{cm}^{3}, 2.4 \mathrm{mmol}$) was added to a stirred solution of the adducts 6 ($\mathrm{R}=\mathrm{Me}, \mathrm{P}=\mathrm{TES}$) and $\mathbf{1 0}$ (ratio $2: 23$) ($38.5 \mathrm{mg}, 0.08 \mathrm{mmol}$) in dichloromethane ($10 \mathrm{~cm}^{3}$) at room temperature. After 2 h the mixture was acidified with hydrochloric acid $\left(2 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and extracted with dichloromethane. The combined extracts were evaporated under reduced pressure and the residue taken up in dichloromethane and treated with an excess of ethereal diazomethane. Removal of the solvent under reduced pressure followed by silica gel chromatography (benzene then $1: 49$ ethyl acetate-benzene) gave an orange solid which was recrystallised from ethanol to give the methoxy ester $35(15.5 \mathrm{mg}, 37 \%)$ as orange plates, $\mathrm{mp} 164-167^{\circ} \mathrm{C}$ (ethanol) (Found: C, $63.7 ; \mathrm{H}$, 6.4. $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{Si}$ requires $\left.\mathrm{C}, 63.85 ; \mathrm{H}, 6.5 \%\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1732$, 1670 and $1614 ; \delta(300 \mathrm{MHz}) 0.65\left(6 \mathrm{H}, \mathrm{q}, J 7.8, \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.99$ ($9 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{SiCH}_{2} \mathrm{CH}_{3}$), $1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.20(1 \mathrm{H}, \mathrm{d}, J$ $14.2,8-\mathrm{H}), 2.66(1 \mathrm{H}, \mathrm{dd}, J 14.2,5.0,8-\mathrm{H}), 3.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.99(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 4.78(1 \mathrm{H}, \mathrm{dd}, J 5.0$, $1.0,7-\mathrm{H}), 7.29(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.8), 7.58(1 \mathrm{H}, \mathrm{s}), 7.67(1 \mathrm{H}, \mathrm{t}, J$ $8.0), 7.81(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.8), 12.05(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and 12.67 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}$); $m / z 497\left(\mathrm{M}^{+}-\mathrm{Et}, 100 \%\right.$) and $465\left(\mathrm{M}^{+}-\mathrm{Et}\right.$ and $\mathrm{MeOH}, 13.7$).

Further elution of the column gave a yellow crystalline solid (5.5 mg) which ${ }^{1} \mathrm{H}$ NMR indicated consisted of a mixture of the methoxy ester 27 and its C-9 epimer 26 (ratio 2.5:1). For the major isomer 27 the ${ }^{1} \mathrm{H}$ NMR data is as follows: $\delta(300 \mathrm{MHz})$ $0.65\left(6 \mathrm{H}, \mathrm{q}, J 7.7, \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.98\left(9 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right)$, $1.2\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.30(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.80(1 \mathrm{H}, \mathrm{dd}, J 11.5,8.5,8-$ $\mathrm{H}), 3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.85(1 \mathrm{H}, \mathrm{s}, 10-$ H), $5.73(1 \mathrm{H}, \mathrm{t}, J 8.5,7-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{dd}, J 8.0,<1), 7.60(1 \mathrm{H}$, s), $7.88(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.82(1 \mathrm{H}, \mathrm{dd}, J 8.0,<1), 12.06(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArOH})$ and $12.78(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$.

Preparation of methyl 4,6-dihydroxy-7-methoxy-9-methyl-5,12-dioxo-9-(triethylsilyloxy)-5,7,8,9,10,12-hexahydrotetracene-10carboxylate 36 and methyl 4,6,7-trihydroxy-9-methyl-5,12-dioxo-9-(triethylsilyloxy)-5,7,8,9,10,12-hexahydrotetracene-10carboxylate 30
A solution of sodium methoxide in methanol $\left(0.91 \mathrm{~mol} \mathrm{dm}^{-3} ; 5\right.$ $\mathrm{cm}^{3}, 4.5 \mathrm{mmol}$) was added to a stirred solution of the adducts 6 $(\mathrm{R}=\mathrm{Me}, \mathrm{P}=\mathrm{TES})$ and $\mathbf{1 0}$ (ratio $3.8: 1)(75 \mathrm{mg}, 0.16 \mathrm{mmol})$ in dichloromethane ($16 \mathrm{~cm}^{3}$) at room temperature. After 2 h the mixture was acidified with hydrochloric acid $\left(2 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and extracted with dichloromethane. The combined extracts were evaporated under reduced pressure and the residue taken up in dichloromethane and treated with an excess of ethereal diazomethane. Removal of the solvent under reduced pressure followed by silica gel chromatography (benzene then $1: 49$ ethyl acetate-benzene) gave a yellow solid ($15 \mathrm{mg}, 18 \%$) which ${ }^{1} \mathrm{H}$ NMR showed consisted of a mixture of the methoxy ester 36 and its $\mathrm{C}-9$ epimer 35 (ratio 1.8:1). For the minor isomer 35 the ${ }^{1} \mathrm{H}$ NMR is as follows: $\delta(300 \mathrm{MHz}) 0.58\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2} \mathrm{Me}\right)$, 0.88 ($9 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{SiCH}_{2} \mathrm{CH}_{3}$), $1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.35(2 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}), 3.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.04(1 \mathrm{H}, \mathrm{s}$, $10-\mathrm{H}), 4.68(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 7.29(1 \mathrm{H}, \mathrm{m}), 7.58(1 \mathrm{H}, \mathrm{s}), 7.65(1 \mathrm{H}$, $\mathrm{m}), 7.81(1 \mathrm{H}, \mathrm{m}), 12.1(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.67(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$. Further elution gave a yellow solid ($1 \mathrm{mg}, 2 \%$) which ${ }^{1} \mathrm{H}$ NMR showed to be aromatic ester $20(\mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{OH})$. Elution of the column with $1: 19$, ethyl acetate-benzene gave the β-methoxy ester $26(24 \mathrm{mg}, 29 \%)$ as a yellow crystalline solid, $\mathrm{mp} 130-$ $133.5^{\circ} \mathrm{C}$ (ethanol) (Found: C, 63.85; H, 6.55. $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{Si}$ requires C, $63.85 ; \mathrm{H}, 6.5 \%$); $v_{\max } / \mathrm{cm}^{-1} 3400,1743,1677,1623$ and $1605 ; \delta(300 \mathrm{MHz}) 0.45-0.55\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SiCH} \mathrm{H}_{2} \mathrm{Me}\right), 0.80(9 \mathrm{H}$, $\left.\mathrm{t}, J 7.8, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.30-2.50(2 \mathrm{H}, \mathrm{m}, 8-$ $\mathrm{H}), 3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.86(1 \mathrm{H}, \mathrm{s}, 10-$ H), $4.83(1 \mathrm{H}, \mathrm{t}, J 7.2,7-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9), 7.58(1 \mathrm{H}$, s), $7.67(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.82(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9), 12.10(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArOH})$ and $12.69(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 497\left(\mathrm{M}^{+}-\mathrm{Et}, 72.9 \%\right)$, $465\left(\mathrm{M}^{+}-\mathrm{Et}\right.$ and $\left.\mathrm{MeOH}, 40.2\right), 394\left(\mathrm{M}^{+}-\mathrm{Et}_{3} \mathrm{SiOH}, 85.1\right)$, $363\left(\mathrm{M}^{+}-\mathrm{Et}_{3} \mathrm{SiOH}\right.$ and OMe , 52.6) and $335\left(\mathrm{M}^{+}-\mathrm{R}_{3} \mathrm{SiOH}\right.$ and $\mathrm{CO}_{2} \mathrm{Me}, 100$).

Elution of the column with 1:4 ethyl acetate-benzene gave the hydroxy ester 30 as a yellow crystalline solid ($16 \mathrm{mg}, 20 \%$), $\mathrm{mp} \quad 200-203^{\circ} \mathrm{C}$ (ethanol) (Found: C, 63.05; H, 6.15. $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Si}$ requires C, $63.3 ; \mathrm{H}, 6.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3500,1748$, 1670 and $1627 ; \delta(300 \mathrm{MHz}) 0.45-0.57\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2} \mathrm{Me}\right), 0.79$ $\left(9 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.35-2.38(2 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.89(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 4.02(1 \mathrm{H}, \mathrm{d}, J$ $2.0, \mathrm{OH}), 5.28(1 \mathrm{H}, \mathrm{dt}, J 8.0,2.0,7-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{d}, J 8.0), 7.65$ ($1 \mathrm{H}, \mathrm{s}$), $7.70(1 \mathrm{H}, \mathrm{t}, J 8.0)$, $7.84(1 \mathrm{H}, \mathrm{d}, J 8.0), 11.99(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArOH})$ and $12.93(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 483\left(\mathrm{M}^{+}-\mathrm{Et}\right.$ and $\mathrm{H}_{2} \mathrm{O}$, $22.1 \%), 380\left(\mathrm{M}^{+}-\mathrm{Et}_{3} \mathrm{SiOH}, 74.1\right)$ and $321\left(\mathrm{M}^{+}-\mathrm{Et}_{3} \mathrm{SiOH}\right.$ and $\left.\mathrm{CO}_{2} \mathrm{Me}, 100\right)$.

Treatment of a mixture of $6(\mathbf{R}=\mathbf{M e}, \mathbf{P}=$ TES $)$ and its $\mathrm{C}-9$ epimer 10 with sodium methoxide
A solution of sodium methoxide in methanol $\left(1.9 \mathrm{~mol} \mathrm{dm}^{-3} ; 10\right.$ $\mathrm{cm}^{3}, 19.0 \mathrm{mmol}$) was added to a stirred solution of the title lactones ($2: 1 \mathrm{ratio}$) ($400 \mathrm{mg}, 0.83 \mathrm{mmol}$) in dichloromethane $\left(60 \mathrm{~cm}^{3}\right)$ at room temperature. After 1.5 h the mixture was
acidified with hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) and extracted with dichloromethane. The combined extracts were evaporated under reduced pressure and the residue taken up in dichloromethane and treated with an excess of ethereal diazomethane. Removal of the solvent under reduced pressure followed by silica gel chromatography (benzene then $1: 49$ ethyl acetate-benzene) gave, a yellow crystalline solid ($108 \mathrm{mg}, 25 \%$) which ${ }^{1} \mathrm{H}$ NMR showed consisted of the methoxy esters 35 and 36 (2.7:1 ratio). Further elution gave a yellow crystalline solid ($215 \mathrm{mg}, 49 \%$) which ${ }^{1} \mathrm{H}$ NMR showed consisted of the methoxy esters 26 and 27 (8.7:1 ratio).

Preparation of methyl 4,6,9-trihydroxy-7-methoxy-9-methyl-5,12-dioxo-5,7,8,9,10,12-hexahydrotetracene-10-carboxylates 37 and 38

Hydrofluoric acid (40% aqueous; $3 \mathrm{~cm}^{3}$) was added to a stirred solution of the silyl ethers $\mathbf{3 5}$ and $\mathbf{3 6}$ (ratio 2.7:1 by ${ }^{1} \mathrm{H}$ NMR) ($108 \mathrm{mg}, 0.21 \mathrm{mmol}$) in dichloromethane ($16 \mathrm{~cm}^{3}$) and acetonitrile ($32 \mathrm{~cm}^{3}$) at room temperature. After 1.5 h saturated aqueous sodium hydrogen carbonate was added and the resulting mixture partitioned between saturated aqueous sodium hydrogen carbonate and dichloromethane. The organic layer was separated and the aqueous layer extracted with dichloromethane. The combined extracts were washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure and the crude product chromatographed on silica gel ($1: 4$, ethyl acetate-benzene) to give auramycinone 7 -methyl ether $38(23.5 \mathrm{mg}, 28 \%)$ as orange plates, $\mathrm{mp} 202-207^{\circ} \mathrm{C}$ (ethanol) (Found: C, 64.2; H, 5.15. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{8}$ requires C, 64.05; $\mathrm{H}, 4.9 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3510,1735,1674,1621$ and 1606; $\delta(300$ $\mathrm{MHz}) 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.30(1 \mathrm{H}, \mathrm{dm}, J 15.0,8-\mathrm{H}), 2.44(1 \mathrm{H}$, $\mathrm{dd}, J 15.0,3.9,8-\mathrm{H}), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.70(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.11(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 10-\mathrm{H}), 4.91(1 \mathrm{H}, \mathrm{dd}, J 3.9,1.9,7-\mathrm{H})$, $4.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.31(1 \mathrm{H}, \mathrm{dd}, J 8.0,0.9), 7.67(1 \mathrm{H}, \mathrm{s}), 7.69$ ($1 \mathrm{H}, \mathrm{t}, J 8.0$), $7.83(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.1), 12.04(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.70(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 412\left(\mathrm{M}^{+}, 26.6 \%\right), 394\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$, 76.6), $380\left(\mathrm{M}^{+}-\mathrm{MeOH}, 43.9\right), 362\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and MeOH , $50.7)$ and $335\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CO}_{2} \mathrm{Me}, 100\right)$.
Further elution gave 9-epi-auramycinone 7-methyl ether 37 $\left(59.5 \mathrm{mg}, 70 \%\right.$) as a yellow crystalline solid, $\mathrm{mp} 200-204^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 64.3 ; \mathrm{H}, 5.05 . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{8}$ requires $\mathrm{C}, 64.05 ; \mathrm{H}$, 4.9%); $\delta(300 \mathrm{MHz}) 1.46(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.18(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $2.6,8-\mathrm{H}), 2.51(1 \mathrm{H}, \mathrm{dd}, J 14.5,5.7,8-\mathrm{H}), 2.82(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{OH})$, $3.51(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $4.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 10-\mathrm{H})$, $4.88(1 \mathrm{H}, \mathrm{dd}, J 5.7,2.6,7-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.0), 7.60(1 \mathrm{H}$, s), $7.69(1 \mathrm{H}, \mathrm{t}, J 8.0), 7.83(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.0), 12.05(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArOH})$ and $12.63(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$; $m / z 412\left(\mathrm{M}^{+}, 2.6 \%\right), 394$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 50.1\right), 380\left(\mathrm{M}^{+}-\mathrm{MeOH}, 15.2\right), 362\left(\mathrm{M}^{+}-\right.$ $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MeOH}, 20.3$) and $335\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CO}_{2} \mathrm{Me}, 100\right)$.

Preparation of methyl 4,6,9-trihydroxy-7-methoxy-9-methyl-5,12-dioxo-5,7,8,9,10,12-hexahydrotetracene-10-carboxylates 28 and 29

Hydrofluoric acid (40% aqueous; $4.5 \mathrm{~cm}^{3}$) was added to a stirred solution of the silyl ethers 26 and 27 (ratio 8.7:1 by ${ }^{1} \mathrm{H}$ NMR) $\left(215 \mathrm{mg}, 0.41 \mathrm{mmol}\right.$) in dichloromethane ($52 \mathrm{~cm}^{3}$) and acetonitrile $\left(36 \mathrm{~cm}^{3}\right)$ at room temperature. After 1.5 h saturated aqueous sodium hydrogen carbonate was added and the mixture partitioned between saturated aqueous sodium hydrogen carbonate and dichloromethane. The organic layer was separated and the aqueous layer extracted with dichloromethane. The combined extracts were washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure and the crude product chromatographed on silica gel ($1: 4$, ethyl acetate-benzene) to give 10 -epi-auramycinone 7-methyl ether $29(15.5 \mathrm{mg}, 9 \%)$ as yellow needles, $\mathrm{mp} 176-$ $180{ }^{\circ} \mathrm{C}$ (ethanol) (Found: $\mathrm{C}, 63.8 ; \mathrm{H}, 4.9 . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{8}$ requires C, $64.05 ; \mathrm{H}, 4.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3440,1737,1676$ and $1620 \mathrm{~cm}^{-1}$;
$\delta(300 \mathrm{MHz}) 1.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.81(1 \mathrm{H}, \mathrm{dd}, J 14.7,3.0,8-\mathrm{H})$, $2.54(1 \mathrm{H}, \mathrm{dd}, J 14.7,3.0,8-\mathrm{H}), 3.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.81(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.97(1 \mathrm{H}$, br s, $10-\mathrm{H}), 4.83(1 \mathrm{H}$, br m, OH$), 4.96$ (1 H, t, J3.0, 7-H), $7.32(1 \mathrm{H}, \mathrm{dd}, J 8.3,0.9), 7.56(1 \mathrm{H}, \mathrm{s}), 7.70$ (1 H, t, J8.0), $7.84(1 \mathrm{H}, \mathrm{dd}, J 7.5,0.9), 12.04(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.68(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; m / z 380\left(\mathrm{M}^{+}-\mathrm{MeOH}, 35.6 \%\right)$ and $362\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{MeOH}, 44.7\right)$.

Further elution gave 7-epi-auramycinone 7-methyl ether 28 ($127 \mathrm{mg}, 75 \%$) as yellow needles, $\mathrm{mp} 211-213.5^{\circ} \mathrm{C}$ (ethanol) (Found: C, 64.25; H, 4.85\%); $v_{\max } / \mathrm{cm}^{-1} 3427,1735,1672,1618$ and $1600 ; \delta(300 \mathrm{MHz}) 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.19(1 \mathrm{H}, \mathrm{dd}, J 14.2$, $6.5,8-\mathrm{H}), 2.50(1 \mathrm{H}, \mathrm{dd}, J 14.2,5.1,8-\mathrm{H}), 3.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 10-\mathrm{H}), 4.83(1 \mathrm{H}, \mathrm{t}, J 5.7$, $7-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{dd}, J 8.7,1.0), 7.62(1 \mathrm{H}, \mathrm{s}), 7.68(1 \mathrm{H}, \mathrm{t}, J 8.0)$, $7.82(1 \mathrm{H}, \mathrm{dd}, J 7.3,1.0), 12.06(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and $12.69(1 \mathrm{H}, \mathrm{s}$, ArOH), one OH resonance undetected; $m / z 412\left(\mathrm{M}^{+}, 10.5 \%\right.$), $394\left(\mathbf{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 16.0\right), 380\left(\mathbf{M}^{+}-\mathrm{MeOH}, 5.8\right), 362\left(\mathrm{M}^{+}-\right.$ $\mathrm{H}_{2} \mathrm{O}$ and $\left.\mathrm{MeOH}, 100\right)$ and $335\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CO}_{2} \mathrm{Me}, 65.7\right)$.

Preparation of auramycinone from 7-epi-auramycinone 7-methyl ether 28

Trifluoroacetic acid ($1 \mathrm{~cm}^{3}$) was added to the methoxy ester 28 $(9 \mathrm{mg}, 0.02 \mathrm{mmol})$ at $-15^{\circ} \mathrm{C}$ (bath temperature). The stirred mixture was allowed to warm to room temperature over 30 min . After a further 1.5 h the mixture was concentrated in vacuo and acetone ($7 \mathrm{~cm}^{3}$) and saturated aqueous sodium hydrogen carbonate ($3 \mathrm{~cm}^{3}$) added with stirring. After 45 min water was added and the mixture extracted with dichloromethane. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure. Silica gel chromatography of the residue gave auramycinone ($7 \mathrm{mg}, 80 \%$) as a yellow crystalline solid with ${ }^{1} \mathrm{H}$ NMR signals identical with those reported in the literature: ${ }^{9} \delta(300 \mathrm{MHz}) 1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.24$ ($1 \mathrm{H}, \mathrm{d}, J 15.0,8-\mathrm{H}), 2.63(1 \mathrm{H}, \mathrm{dd}, J 15.0,5.0,8-\mathrm{H}), 3.37(1 \mathrm{H}$, br s, collapses with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.04$ ($1 \mathrm{H}, \mathrm{s}$, collapses with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}\right), 4.06(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 5.4(1 \mathrm{H}$, br m, d, $J 5.0$ with $\left.\mathrm{D}_{2} \mathrm{O}, 7-\mathrm{H}\right), 7.33(1 \mathrm{H}, \mathrm{dd}, J 8.4,0.9), 7.69-7.74$ ($2 \mathrm{H}, \mathrm{m}$), $7.85(1 \mathrm{H}, \mathrm{dd}, J 7.6,0.9), 11.98(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$ and 12.75 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}$).

Preparation of auramycinone from auramycinone 7-methyl ether 38

Trifluoroacetic acid ($1 \mathrm{~cm}^{3}$) was added to the methoxy ester 38 ($6 \mathrm{mg}, 0.015 \mathrm{mmol}$) at $-15^{\circ} \mathrm{C}$ (bath temperature). The stirred mixture was allowed to warm to room temperature over 30 min . After a further 1.5 h the mixture was concentrated in vacuo and acetone ($7 \mathrm{~cm}^{3}$) and solid sodium hydrogen carbonate were added with stirring. After $\sim 5 \mathrm{~min}$ water was added and the mixture extracted with dichloromethane. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure. Recrystallisation of the residue gave auramycinone ($5.3 \mathrm{mg}, 91 \%$) as a yellow crystalline solid with ${ }^{1} \mathrm{H}$ NMR signals identical with those reported. ${ }^{9}$

References

1 D. A. Bleasdale and D. W. Jones, J. Chem. Soc., Perkin Trans. I, 1991, 1683.

2 E. J. Bush and D. W. Jones, J. Chem. Soc., Chem. Commun., 1993, 1200; D. W. Jones and A. M. Thompson, J. Chem. Soc., Perkin Trans. I, 1993, 2533; D. W. Jones and A. M. Thompson, J. Chem. Soc., Perkin Trans. 1, 1993, 2541.
3 M. E. Jung, R. W. Brown, J. E. Hagenah and C. E. Strouse, Tetrahedron Lett., 1984, 25, 3659.
4 Preliminary communication, D. W. Jones and C. J. Lock, J. Chem. Soc., Chem. Commun., 1991, 1509.
5 B. A. Pearlman, J. M. McNamara, I. Hasan, S. Hatakayama, H. Sekizaki and Y. Kishi, J. Am. Chem. Soc., 1981, 103, 4248.

6 D. W. Jones and G. Kneen, J. Chem. Soc., Perkin Trans. I, 1976, 1647.

7 J. M. McNamara and Y. Kishi, J. Am. Chem. Soc., 1982, 102, 7371; Tetrahedron, 1984, 40, 4685.
8 B. J. Hunt and W. Rigby, Chem. Ind. (London), 1967, 1869.
9 H. Una, Y. Naruta and K. Nurayama, Tetrahedron, 1984, 40, 4725.

Paper 5/04058B
Received 23rd June 1995
Accepted 11 th July 1995

